Interface Dynamics for Bacterial Colony Formation
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We propose a differential-equation model with a nonlinear diffusion term for explaining pattern
formation of bacterial colonies, and carry out its numerical simulations. Our model is reduced to
an interface dynamics by means of a systematic perturbation method. This is similar to a model
system for viscous fingering except that the field around an interface obeys a diffusion equation

and that surface tension does not work on the interface.

How the difference in morphology

results depending on the condition is explained qualitatively.
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81. Introduction

Bacteria are relatively simple organisms and their be-
havior is restricted severely by the environment. Under
bad conditions, they often exhibit patterns similar to
those in many physical systems such as fingering pat-
terns.

In recent years, pattern formation of bacterial colonies
for some kinds of species has been studied enthusiasti-
cally'™). In particular, a complete phase diagram has
been obtained for the colonies of Bacillus subtilis, where
the important control parameters are the concentration
of agar C, and that of the initial nutrient ng in an a-
gar culture medium. The resulting phase diagram in-
cludes some interesting regimes such as diffusion limited
aggregation(DLA), dense branching morphology(DBM),
Eden-like and ring patterns*®. In this paper, we con-
centrate on this particular species of bacteria.

A number of models have been proposed so far to ex-
plain these experiments and succeeded in reproducing
some of the patterns observed® !9 . Still, they are un-
able to provide a simple description of pattern formation
so that the results may be compared with similar phe-
nomena in physical systems.

In §2, we propose a differential-equation model with
a nonlinear diffusion term. The results of its numerical
simulations are consistent with experiments, which will
be discussed in §3. We reduce our model to an inter-
face dynamics in §4, and from this viewpoint, pattern
formation of bacterial colonies is revisited in §5. Some
conclusions are given in §6.

82. Modeling

Bacteria eat nutrient, move around rather randomly
and increase in number by splitting on the surface of an
agar culture medium. In poor-nutrient condition, they
suspend these actions and transform to a special form
for dormancy. For simplicity, we discretize the state of
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bacteria into two, i.e., active and inactive states. The
bacterial density is represented as a sum of the densi-
ties of active and inactive bacteria, each represented by
b(x,t) and a(x,t), respectively. The same idea was also
used in other models® 9. We moreover assume that the
movement of the active bacteria is influenced by neither
the nutrient concentration n(x, t) nor the inactive bacte-
rial density a(x,t). Because in experiments the bacteria
hardly recover from the dormant form, we need to consid-
er only the change from the active state to the inactive
one. Therefore, the bacterial growth will qualitatively
follow the equations

b = V[D(B)VH] + g(n,b) — h(n, b) (2.1a)

and

Ora = h(n,b), (2.1b)

where D(b) is a diffusion coefficient of the active bacteria
and g and h are the rates of increase and dormancy,
respectively.

The nutrient is prepared uniformly in the agar before
the inoculation of the bacteria with the initial nutrien-
t concentration n(x,0) = ng. Because the agar plates
used in the aforementioned experiments are sufficiently
thin, the nutrient concentration n(x,t) practically obeys
a two-dimensional diffusion equation with a consumption
term

o = DpAn — f(n, b), (2.2)

where D, is the diffusion constant of the nutrient and f
is the consumption rate.

Equations (2.1) and (2.2) give a closed set of equations
for the nutrient concentration n(x, t) and the active bac-
terial density b(x,t), although what we observe in real
situation is the total bacterial density b(x,t) + a(x, t).

To determine the functions f, g and h, we impose the
following conditions which seem natural:

i) For the rate of consumption, f(0,b) = f(n,0) =0,

and f(n,b) increases with n and b.



ii) For the rate of increase, ¢(0,b) = g(n,0) = 0, and
g(n,b) increases with n and b.
iii) For the rate of dormancy, h(n,0) = 0, and h(n,b)
increases with b.
For simplicity, we consider only the linear functions to
satisfy these conditions, i.e., f,g oc bn and h o b.

The diffusion coefficient D(b) characterizes the move-
ment of bacteria. In experiments for higher agar concen-
tration Cy, the agar becomes stiffer so that the bacteria
can hardly move unless they swarm. Therefore, we ex-
pect D(0) = 0 when C, is large. This is also support-
ed by the observation through microscope for the real
interface of the bacterial colonies. The bacterial densi-
ty decays gradually to zero at the interface under the
small-C, condition, as is expected in the case of finite
diffusion D(0) # 0. Under large-C, condition, on the
contrary, the interface forms a very sharp wall with the
width only of a few times as thick as the bacterial size. In
order to investigate how the difference between normal
and nonlinear diffusion reflects on the pattern formation,
we choose the diffusion coefficient as D(b) oc b¥, where
k = 0 corresponds to the normal diffusion.

After suitable scaling, we obtain equations with three
non-negative parameters D, p and k in the forms

On = An — nb, (2.3a)
Otb = DADETY) + (n — p)b (2.3b)
and
Ora = pb. (2.3¢)
The initial conditions are set n(z,y,t) = 1 and

b(z,y,t) = bo(z,y), the latter depending on how the bac-
teria are incubated. No-flux conditions are imposed at
the boundary of the agar culture medium, or we may use
the boundary conditions n(x,y,t) — 1 and b(x,y,t) — 0
as |x| — oo instead. In the subsequent sections, we ex-
amine the behavior of the solutions of this model.

83. Simulations

In this section, we investigate the model proposed
above by numerical simulations. This system has sen-
sitivity to anisotropy which is inherent in fingering pat-
terns. In order to remove artificial anisotropy produced
by a regular-lattice model, we use a random latticell:12)
composed of Voronoi cells generated by random points
(see Fig.1).

We let the length [ between neighboring points have
a lower limit Iy so that we may use the Euler method.
Without introducing any artificial noise in the simula-
tions, randomness comes naturally from the distributions
of the length [ and the volume v of the cells such as shown
in Fig.2.

The simulations were carried out for £k = 0,1,2 and
3 on the lattice with 10000 sites whose horizontal and
vertical extensions are (Lg, L,) = (200, 40). We imposed
periodic conditions on the horizontal boundaries, no-flux
conditions on the left vertical one and fixed conditions

Fig. 1. Random lattice
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Fig. 2. The distributions of the length | between neighboring
points and the volume v of the cells.

b(x,t) = 0 and n(x,t) = 1 on the right vertical one. The
initial conditions assumed are n(x,0) = 1, a(x,0) = 0
and b(x,0) = 0.010(5 — z) where O(z) is the Heaviside
step function.

The results of the simulations are summarized as fol-

lows.

e When k vanishes, the interface of a growing colony
forms a stable straight interface regardless of the val-
ues of the other parameters p and D. The interface
propagates with a constant speed which increases
with D and decreases with p.

e When k > 1, the straight interface loses stability ei-
ther as D decreases or as i increases, which is shown
in Fig.3. For small D and vanishing u, the interface
develops some dented cusps, although they do not
develop into grooves. In contrast, fingering patterns
appear for non-vanishing p and they become fractal-
like patterns with increasing p and decreasing D. At
the same time, they grow slowly and the total bac-
terial density increases.

These results are consistent with the experiments* %

introduced in §1. The initial nutrient concentration ng
before the scaling is represented by 1/u except for a mul-
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Fig. 3.
the same as a + b for 4 = 0 because a = 0.

tiplicative constant. We presume from the discussion in
§2 that vanishing k£ and large diffusion constant D cor-
respond to soft agar condition, i.e., C; small, while non-
vanishing k£ and small D correspond to large-C, condi-
tion. Because in experiments the bacteria are inoculated
initially as a point, the colony spreads out in a circle.
We observe a simple disk for large initial nutrient ng and
small agar concentration C,, Eden-like patterns for large
ng and large Cy, and fingering patterns such as DLA for
small ng and large C,. Ring patterns do not appear in
our model, and this point will be discussed in §5.

84. Interface Dynamics

In this section, we reduce our differential equations to
an interface dynamics to understand the results of the
previous section more theoretically. We use a perturba-

For k = 1 and some values of D and p, the snapshots of a + b, b and n are illustrated with the gray scale printed bellow. b is

tion method similar to the one applied by Caginalp'® to
the phase field model** 1) for crystal growth.

By introducing a small parameter € which will turn out
later to represent the width of the interface, we rewrite
our equations into

20m = /An —nb (4.1a)
and
201 = DALY + (n — ep)b. (4.1b)
We expand these equations in € like
n= Z ™™ (z,y,1), (4.2)
m=0



o(1) n@pO® =9,

O(e) n(l)b(o) —+ n(o)b(l) = O’
ub©® =0,

O(e?) 9n® = An® — pOp® _ (pM) _ @),
9,5® = nOp® 4 (D — )b 4 @O,

These expansions are correct outside the interface be-
cause the spatial derivative V is of the order of 1/e with-
in the interface. Such expansions are called the outer
expansions. We get the following results.

If n9 # 0, ;1% = An(® and b = 0. (4.3a)
b =0 for u = 0.
0 _
ltn” =0, 9h® =0 for u #£0. (4.3b)

Equation (4.3a) is satisfied outside the bacterial colony
and, as shown later, eq.(4.3b) holds inside the colony.

In order to determine the velocity V' of the interface,
we next consider the inner expansions by transforming
the coordinates (z,y,t) to (£, y,t), where €€ = x — ¢(y, t)
and x = ¢(y, t) represents the interface perpendicular to
the z-axis. Equations (4.1a) and (4.1b) now take the
forms

20 = Ogen + €(V + k) O¢n + €20yyn —nb  (4.4a)

and

€201 = €D (Oce + €k0g + €20y )b" T + €V Oeb + (n — ep)b

(4.4b)
on the ¢-axis, where V' = 0,¢ and kK = —0y, ¢ represent
the velocity and curvature of the interface, respectively.
We expand them again in the form

m=0

(4.5)

where the functions in the inner expansions are indicated
with a tilde.

The boundary conditions for 7(™ and b("™ are ob-
tained from the matching conditions between the outer
expansion eq.(4.2) and the inner expansion eq.(4.5). The
formal e-expansion

ey t) =Y €™ (b + €, y, )
m=0 m=0

gives the following conditions for #("™ and n(™ in the
limit e — 0 and £ — oo:

O(1)  9¢nl®(fo00,y,t) =0,
0 (00, y,t) =nl0 (¢ +0,y,t),
O(e)  0enM(Fo0,y,t) = 9;nD (¢ £0,y,1),

where A(£00) = A(¢ + 0) represents

limg_. 00 A(€) = lims_o,550 A(¢ + 5)

limg_,,oo A(f) == lim(;_,075<0 A(¢ + (5)
The O(1) equations for egs.(4.4a) and (4.4b) are
36513(0) = p0p0) — ¢

and

(4.6)

with the boundary conditions 9¢7(?) (+00, y,t) = 0. The
only possible solution is (%) = constant, which gives the
condition for continuity n(®)(¢+0,y,t) = n® (¢ -0, y,1)
at the interface because 7(%) (xo0,y,t) = n(9(¢£0, y, t).

By substituting the solution into egs.(4.4a) and (4.4b),
the O(€) equations are given as

e — 7 VFO _ZOFD Z 0 (47a)

and

Deeb O 4 Vb 4 (Y — )b @ 4 O = o,
(4.7b)

where the boundary conditions are 9¢i!) (o0, y,t) =
9.1 (¢ + 0,y,t) and 9¢b® (d00,y,t) = 0. We easily
get 79D = 0 from eqs.(4.6) and (4.7). Therefore, n(1)
and b are found by solving eq.(4.7).

We know from eq.(4.3a) and the matching condition-
s 0 (d00,y,t) = bO(¢p +0,y,t) that b (400,y,t) is
identical to zero. Because n(¥)(¢,y,t) = #(® = 0 if
b(©® £ 0, eq.(4.3b) is satisfied inside the colony so that
9enM(—00,y,t) = 0. If the solution of the boundary
value problem eq.(4.7) is solved uniquely and turned out
stable, this gives the relation between the interface ve-
locity V' and the nutrient gradient 9,n(%) (¢ +0,y,t) at
the interface.

Equations (4.7a) and (4.7b) reduce to the equations
with the single parameter pu,

deen = nMp©) (4.8a)

and

6§§B(O)k+1 + 855(0) + (ﬁ(l) — /L)B(O) =0. (4.8b)

Here we have made rescaling @ — B 7O
Na© ¢ — X¢and yp — Ny, where X = (D/V)V/(2k+1)
N =V/X and B = 1/X?. When k is nonzero, we may
take the origin of £ as b0 (€) # 0 for negative ¢ and as
b0 (¢) = 0 for positive €. Because eq.(4.8b) provides the
asymptotic solution for 5 for negative ¢, i.e.,

1
b0 (&) — (—ﬁ_lS) Foase -0, (4.9)
the nonlinearity of the equation gives the additional
boundary condition

_ k
k+1°

The solution of eq.(4.8) satisfying this condition gives
the relation between 9,1 (¢ +0,y,t) and pu:

9" (¢ +0,y,t) = F(p),

where we have assumed the solution stable.

With the original scale, this relation describes the
magnitude of the nutrient gradient |Vn(®)| = 9,1 (¢ +
0,y,t) at the interface as a function of the velocity V as
follows,

(4.11)

2k+2

_2
Vn©| = v (Z) 2k+1 sl n (9) 2k+1

412
D D\V (4.122)



Supplemented with the equations
{ o0 = A

outside the colony

4.12b
inside the colony, ( )

n® =0
the interface dynamics is thus completed. We note that
the interface dynamics can not be constructed for vanish-
ing k because the additional boundary condition (4.10)
is given by the nonlinearity of eq.(4.8b).

We computed F'(u) in eq.(4.11) by solving the bound-
ary value problem egs.(4.8) and (4.10) with the relax-
ation method. Figure 4 shows F'(u) for some values of
k. We summarize the feature of F' ().

1. F(0) is nonzero and increases with k. Therefore, for

vanishing p or for large V/,

2
2k+1
V) . (4.13)

vnOl vV ([ =

Vil V (5

2. F(u) oc p®*) for large ., where (k) is an increasing
function for k and a(1) ~ 0.5 as shown in Fig.5. The
functional form for large p describes the movement
of the interface for small V| because

V| x V¢ asV —0, (4.14)

where ¢ = [2k+3—(2k+2)a]/(2k+1). In particular,
|V 9] is proportional to V when oo = 0.5, or k =~ 1.
3. F(u) — 0 for the limit k — 0.
In the next section, we will discuss the patterns obtained
in §3 on the basis of these results.

F(w)
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Fig. 4. F(u) are calculated for k = 0.5,1.0 and 2.0.

85. Discussions

For non-vanishing k, we constructed the interface dy-
namics eq.(4.12). We first consider the interface in one-
dimensional space x. Because the steadily propagating
solution of eq.(4.12b) is given by

TL(O) o { 1—e V=Vt o >Vt
10

<Vt (5.1)

the nutrient gradient |Vn(?)| at the interface approaches
V' if the velocity V is fixed. By inspection of the fixed
points |[Vn(9| = V, we notice that eq.(4.12a) has three
types of the behavior as illustrated in Fig.6.

a
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Fig. 5. The power a(k) of F(u) for large p.
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Fig. 6. |Vn(9] are illustrated as functions of V', when /D = 0
or k<1in a) and when p/D # 0 and k > 1 in b).

i) For vanishing /D or k < 1, there are an unstable
fixed point at V' = 0 and a stable one at finite V' to
which the velocity of the interface always tends.

ii) When p/D is finite and small for k& > 1, bistability
appears with two stable fixed points at V = 0 and
finite V.

iii) When p/D is large for k > 1, there is only one stable
point at V' = 0. Consequently, the steadily prop-
agating solution does not exist in one-dimensional
space.

We note that the stability of the state V' = 0 is a result

of combined effects of the nonlinear diffusion and the

suspension of the activity.

In two-dimensional space, change in the stability of the
state V = 0 is expected to change the movement of the
interface in the poor nutrient concentration. Although
a straight interface propagating with a constant speed is
always unstable as shown in Appendix, we saw already
by the numerical simulations in §3 that fingers do not



grow in the parameter region i), but they do in ii) and
iif).

The fingers develop stronger with increasing p/D.
When the velocity V is so small that the system size is
much larger than D,,/V, eq.(4.12b) may be approximat-
ed by Laplace equation; An(®) = 0. Because eq.(4.14)
approximates |Vn(9)|, this is nothing but a standard
model*®:17) generating fractal patterns. It should be not-
ed, however, that the surface tension does not work in the
dynamics because the curvature & contributes to |Vn ()|
in eq.(4.11) only to the order of e. In that case, the in-
terface dynamics breaks down due to the development of
cusps. Therefore, developed fingers are expected to have
a characteristic width of the order of ¢, i.e., the thickness
of the interface. This point makes a difference from the
normal viscous fingering where the surface tension effect
plays an important role in determining the shape of a
finger.

Finally, we consider the case of normal diffusion k = 0.
We know from the asymptotic form of eq.(4.9) that, as
k decreases to zero, the origin of ¢ in §4, where the bac-
terial density b(§) vanishes, does not coincide with the
natural front where b(§) decreases most rapidly. Con-
sequently, the front propagation for vanishing k is not
described as the limit of vanishing k in the interface dy-
namics discussed above. When k equals zero, our mod-
el gives a kind of Fisher-type equations, whose veloci-
ty selection for the propagating front has been studied
by many people'®23). “The linear marginal hypothe-
sis” proposed by W. van Saarloos??) gives the asymptot-
ic speed V = 24/D(1 — p) of the propagating front for
eq.(2.3) and this agrees with the results of our numerical
simulations. We also observed numerically in §2 that the
straight front is always stable. How the normal diffusion
changes into the nonlinear one and what happens then
will be a future problem. Experimentally, ring and DBM
patterns appear in the corresponding parameter region.

86. Conclusions

We proposed the differential-equation model for the
pattern formation of the bacterial colonies, and carried
out, its numerical simulations. Our results are consis-
tent with experiments. Our model was reduced to an
interface dynamics by using a systematic perturbation
expansion. It is similar to a system exhibiting normal
viscous fingering except that it does not include a sur-
face tension effect. We discussed that the appearance of
fingering patterns requires both the effects of nonlinear
diffusion and suspension of the activity of the bacteria.
The difference between the normal and the nonlinear dif-
fusion is also considered in the framework of the interface
dynamics.
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Appendix: Linear Stability Analysis of eq.(4.12)
for a straight interface

We include surface tension effect into eq.(4.12) and
consider the equation

On = An (A-la)

with the conditions

at the interface, (A-1b)

n=>0

V = G(Vn|) — vk
where k represents curvature of the interface and v is a
constant. The steadily propagating solution with veloc-
ity V; is described as

—Vs(z—Vst)

for z > Vit, (A-2)

n=1—e

where Vs = G(V;) and @ = Vit represents the position
of the interface. We investigate linear stability of this
solution.

We set Vs = 1 without loss of generality because this is
always possible by the scaling Vsx — x and V2t — t. By
making a transformation into the moving coordinates;
x — ¢(y,t) — x, eq.(A-1) becomes

Oin = {[1+(0y$)?|0na+0yy+ (01— 0y ) Op — 20y $0uy I,

(A-3)
where © = ¢(y, t) represents the interface and the steadi-
ly propagating solution eq.(A-2) is described with the
equation

n=ng(x)=1—e* forz>0 (A-4)
with G(1) = 1.
We consider small perturbations
P(y.t) =t + 0 g™ cos qy (A-5)
n(z,y,t) = ns(z) + dnaq(z)er cos qy.

Because V' and & represent 0y¢ and —0y,¢, respectively,
the linearized equations are given by

(v — Ls)ony g = vddr g0xns (A-6a)

and
)\5¢)\,q = Glaxfsnk,q‘x:(] - ﬂ/q25¢k,qa (A6b)

where v = A\-¢?, L = 03+ 0, and G’ = dG(Vs)/d|Vnl.

The translational mode is a particular solution of eq.
(A-6a), L;0yns = 0. Therefore, the general solutions are
given in the form

dnxq(x) = ddx qOzns(x) + uy (), (A7)

where u, () satisfies (v —L;)u, = 0. The boundary con-
ditions u, (0) = —d¢x ¢ and u, (c0) = 0 are imposed on
uy () because 0ny 4(0) = dny q(c0) = 0 and Iyns(0) = 1.
By substituting eq.(A-7) to eq.(A-6b), A is found in the
form

A= —G'(1+ 9y loguy|s—o) — 74> (A-8)

where we used 9,,n5(0) = —1.
Because u,(z) is proportional to e=#(1HVIH)/2 " e



obtain an analytical form for A:

Stability of the straight interface propagating with a fi-
nite velocity depends on the value of G':

G’ < 7 : stable for the all modes.
v < G’ < 1: unstable for the long wave perturbations.
1 < G’ : unstable for the translational mode.

Therefore, the straight interface propagating with con-
stant velocity is always unstable because v is O(e) in
eq.(4.12). If G is proportional to |Vn|Y/¢ as eq.(4.14),
G’ equals 1/¢. The unstable fixed point discussed in §5
corresponds to the case 1 < G'.

The above results are also applied to the interface with
small curvature ks by rewriting Vi to Vs + ks, where
G’ = dG(Vs + ks)/d|Vn| and the velocity V; is given
by the equation Vi = G(Vs + ks) — 7ks. Because G’ =
1/[(1 + k4/V5)C] if G o |Vn|Y¢, the interface generally
becomes more stable with the increase of the curvature.
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