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Abstract

For the purpose of understanding fingering patterns, we propose a
simple model system composed of splitting elements where we regard
a tip of each finger as a basic dynamical unit. Numerical simulations
of the model reproduce turbulent states, fractal and tree-like struc-
tures and spatiotemporal intermittency which are all quite similar in
behavior to real systems.
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1 Introduction

Fingering patterns appear in various systems such as crystal growth[10,
15], viscous fingering[2], electro-deposition[7, 17] and bacterial colonies[11].
In their formation, the fingers repeat growths and splittings, and their
movement produces many complicated patterns. They are classified into
diffusion-limited agregation(DLA)[19], dense branching morphology(DBM)
and dendritic growth [7, 8, 10, 13, 17] according to their fractal dimen-
sion and the appearances of the branches. Recent experiments on direc-
tional viscous fingering[1, 12, 14] also report other patterns such as spatio-
temporal chaos and spatio-temporal intermittency(STI) and they are similar
to those obtained from partial-differential-equation models and coupled map
lattices[9].

The above-listed systems are very different microscopically, although in
some cases, e.g, the case of bacterial colonies[3, 18], the underlying mech-
anisms remain unknown. Many models have been proposed to clarify the
mechanisms behind each of these systems. When the patterns are seen at
a macroscopic level, however, the natures of the fingers seems rather sim-
ple and universal: The fingers interact repulsively through a diffusive or a
Laplacian field and mutually suppress the growth. Outgrown fingers split
into smaller ones. Thus, the variety of fingering patterns seem to come from
the complexity of the dynamics of the fingers rather than the differences in
their microscopic mechanisms. Therefore, we are concerned with the rela-
tionship between the nature of the individual fingers and their dynamics as
an assembly[16].

Usually, the fingering pattern grows only in the tip region of the fingers,
so that the growth processes may be visualized as trajectories of the tips.
Consequently, if we regard each tip as a basic unit, we have a dynamical
systems composed of splitting elements. In section 2, we propose a sim-
ple phenomenological model in which the tip of each growing finger stays
on a straight line, which is consistent with experimental observations on
directional fingering and DBM. Our model reproduces patterns similar to
real systems in spite of its extreme simplicity. We carried out mathematical
analysis and numerical simulations for the simplest version of the model.
The types of behavior discovered include turbulent states, fractal-like and

tree-like structures discussed in section 3, and also STI discussed in section
4.



2 Model

In most systems, the fingers interact through a certain field which obey
a simple equation. Therefore, we first consider the form of the interaction
at first.

Suppose that the tip region of each finger is sufficiently localized as
compared with the distance between neighboring fingers. This is actually the
case in many systems, and is best exemplified by some bacterial colonies|6,
13]. Therefore, we will take in the present paper the system of bacterial
colony as a target system of our consideration.

The most important factor in the growth of a bacterial colony is consid-
ered to be the nutrient concentration n(x,y,t). This quantity is assumed to
obey a diffusion equation with a consumption term[18],

on =D A n—vnb, (1)

where D is a diffusion constant, and the initial condition n(z,y,0) = ng will
be imposed. b(z,y,t) denotes the density of active bacteria and ny and v
are constants. b(z,y,t) is assumed nonvanishing only at the tip of fingers,
because the rapid decay of nutrient in the presence of active bacteria will
soon make the latter inactive in the inner region of the fingers.

By means of the transformation n(x, t) = nge %), Eq.(1) is rewritten
in the form

du = D(Au — |Vul?) 4+ vb (2)

for which the initial condition u(z,y,0) = 0 is assumed. For N growing fin-
gers, we have N tips where the bacterial density is nonvanishing. Therefore,
it is convenient to write

N
b(x,t) = Z bi(x,t), bi(x,t) =0 except in the i-th tip.
1=1

Consider the solution u;(x,t) of the equation
Oyu; = D(Auz — |VUZ|2) + vb; (3)

with the initial condition u;(x,y,0) = 0, where b in Eq.(2) has been replaced
by bz

As discussed in Appendix A, if the tip region of each finger is sufficiently
localized, the fields u;(x,t) are so small that u(x,¢) may be approximated



by their superposition except near the tips. Therefore, the nutrient concen-
tration is represented near the i-th tip in the form

n(x,t) = nge "X ~ n,;(x, t)(1 — Ui(x, 1)), (4)

where n; = nge™ and U; = 37,4, u; < 1. The field u;(x, t) is approximated
far from the tip in the form

wi(%, 1) =~ /0 T G(x —xi(t), =) Ci(e), (5)
where

Ci(t) = nio/dxuni(x, Hbi(x,t), x(t) L

- noC;(t)

/dx x vn;(x, t)b;i(x,t)

and G(x,t) is the Green function of a two-dimensional diffusion equation
vanishing at infinity, i.e., G(x,t) = ﬁe*mg/‘mt. We call C; the mass of
the i-th finger.

We now consider a simple situation that the tip of each growing finger
moves alongside with approximately a constant speed like y;(t) = Vt. This
is actually the case for DBM patterns. Suppose that V is so large as to
satisfy |b;| < b;V?/D and |i;] < V. Then, u; may be approximated by a
steadily propagating solution

’LLZ'(CE, Y, t) = Cz(t)uv(x - xi(t)a Yy— Vt) (6)

Therefore, Fi(z,t) = U;(x, Vi, t) is expressed in terms of (C(t), z(t)) as

N
Fi(w,t) =~ Y fz —2;(t))C5(t), (7)
J#i
where f(z) = uy(z, V).

The time-development of the i-th finger will be influenced by (Cj, z;) of
the other fingers through F;(x,t). We belive that the mutual interaction of
the fingers in other systems is also expressed in the form similar to Eq.(7).

Finally, we consider the dynamics of (C;, ;) to complete our model.
Because each tip is very narrow and experiences only a week field Fj(z,t),
the effect of higher order terms and higher spatial derivatives of F;(z,t) may
be neglected. Therefore, by noticing the reflection symmetry with respect
to x; — —x;, their equations may generally be expressed as

dC’Z o dIZ

i 9(Ci) — a(Cy) F(i) , e —b(Ci)a—(fﬂz’)- (8)




For a variety of real systems, one may expect that the appearances of
fingering patterns are basically independent of the detailed nature of the
interaction and the elements. Therefore, we take the following simple forms
for g(C), a(C) and b(C):

g9(C) =a—~C, a,b= constant. 9)
We also assume exponential form for f(z) to simplify Eq.(7), i.e.,

f(z) = e, (10)

which has some advantage in numerical simulations. In Eq.(9), a and b are
assumed positive, because the interaction between fingers usually suppresses
growth and works repulsively.

We incorporate splitting and annihilation processes of fingers by intro-
ducing thresholds in the following way. If the mass C; exceeds the value Cyp,,
the corresponding element is assumed to split into two units with masses
(146)C;/2 and (1 —0)C;/2 which are sitting at the same place immediately
after the splitting event. Conversely, if C; becomes smaller than zero, the
corresponding element is removed from the system. Annihilations of fingers
means their being left behind the envelope formed by the growing fingers in
the case of DBM. Although we may choose other rules which do not conserve
the mass, these rules are simplest ones because of the invariance of the field
> flx —2;)C.

After suitable rescaling, our equations finally take the form

dC;
CZ =a —C; — Fi(x;), (11a)
- D, 11
o o () (11b)
where
Fi(a) =X e, (12)

These equations must be supplemented with the following rules:

The i-th element splits into two elements (146, z;)

Ci>2— and (1 — d,z;) and N increases by one.

(13a)

C <0 The i-th element is removed and N decreases by (13b)
t one.
The parameters o and 7 characterize the nature of the individual element

and 3! gives the range of interaction; ¢ indicates anisotropy of splitting.



The above set of equations and rules constitute our basic model. In the
present paper, we shall confine our investigation to the case § = 0.

We assume that the system is extended transversally from x = 0 to L
and satisfies periodic boundary condition. Then Eq.(12) is rewritten in the
form

Fi(z) = Ej-v e Plz—zil . cosh B(x — z;)| Cj — Ci. (14)

eBL _
As t — o0, the system will tend to settle in a statistical stationarity as
a result of the balance between creation and annihilation of the elements.

3 Turbulent states and related structures

To examine the system behavior, we begin with the case v = 0. Figure 1
shows a phase diagram obtained from numerical simulations for transversal
system size L = 20. Turbulent states appear at large a and § as shown in
Fig.2. For sufficiently small a and 8 under fixed L, in contrast, the final state
is such that all elements except one are annihilated, although the parameter
region corresponding to such a state vanishes as L — oo.

We introduce average density p and interval T of splitting to characterize
the turbulent state. They are defined by

= <220i> ’ (15a)
L= 225G
B <%Nsplit>, (15b)

where dNgpit(t)/dt is the frequency of splitting and (-) represents a long
time average.

We found that the distribution function of C; has a peak near C; = 1.
This occurs for the reason that the elements are produced at C; = 1, so that
p ! gives approximately the mean spacing [ = L/N between elements. p
behaves like p = (r(a) as shown in Fig.3. r(«) increases with o approaching
a/2, because from Eqgs.(11) and (14) we have dC;/dt = a — 2p/5 + O(1) in
the limit of a — oo under fixed af.

Equations (11a) and (11b) are also rewritten in terms of “free energy”

H:
dc;  OH dr;  OH
@~ oo Ya T am (16)




where ] ]
H=Y (—aC; + =7C?) + =Y e Pliailc; ;.
;(a +2m>+2;e j
Each splitting adds 1 + « to H, while annihilation does not change H.
Therefore, the time development of H is governed by the equation

dH dN gt
— == D+ (1+y)—2= 1
i i +(1+7) T (17)
where
OHN\? 1 (0H\? 5 OF;\?
L= — — o — ) == > (.
D (ao) ‘o (6%) (Fi— o —~C5) +CZ(&Q> >0, (18)

>~; D; vanishes in the stationary state. We may thus regard ), D; as an
indicator of disorder. In statistical stationarity, the long-time average of
dH/dt vanishes, so that

(S Nopi) = ﬁ@ Dy, (19)
This equation may be interpreted as a balance between the frequency of
splitting and the disorder of the system.

The behavior of 7 obtained from our numerical simulations is described
in Fig.1 with contour lines. As « increases under fixed af, 7 decreases
and saturates to a constant. In this limit, the space-time pattern becomes
fractal-like as shown in Fig.4. This is not surprising because the range of
interaction becomes infinitely long in this limit which is similar to the case
of DLA. The wavenumber spectra of the density p(z) = Y, Cid(x — z;) for
some different parameter values are illustrated in Fig.5. As we increase a,
the spectrum gives rise to a hump in the intermediate wave numbers and
exhibits a power-law decay at large wave numbers. We note that such a
change of structure does not reflect in p nor 7.

When £ is sufficiently small, homogeneous turbulent state changes into
a tree-like structure as shown in Fig.6, where the elements move and split in
small groups. We may find the number of trees np by counting those spaces
[; between neighboring elements lager than the mean spacing [. Then the
spacing [l and the width W for the trees are defined by

- L a
‘17 j— 1 E .



These definitions are useful only if W/lp is sufficiently small. Ip behaves
like Bl = h(a) similarly to the mean spacing [ as implied from Fig.7. Note
that [p/l gives the average number of elements per tree and increases with
Q.

In the parameter region under consideration, stable periodic structures
like those in Figs.8 and 9 easily appear. They becomes less probable for
larger L. However, they are found to be stable up to sufficiently large L.
They are roughly classified into two groups according to whether the trees
propagate or not. Propagating trees appear mainly at small «, which are
composed of relatively small number of elements. We may regard such a
tree as a unit with many internal degrees of freedom. As we show in the
next section, simple stationary periodic states are unstable if v = 0. The
stable periodic structures imply that the grouping of elements into small
assemblies tends to stabilize the pattern.

4 Stability of stationary states and STI

We now consider the case v # 0. Egs.(11a) and (11b) admit a family of
stationary solutions. They represent the states in which the elements have
the same mass Cy and regularly spaced with period Iy = L/N, where

o
s = W—F ; (21a)
~ 2

Note that the value of [ is limited by the condition 0 < Cy < 2.

In order to study the condition for stability of these stationary states, let
(Cj,z;) be disturbed from (Cy, l,j) slightly, and put (Cj,z;) = (Cs, 1sj) +
(6C, 0z)eMt4 and ¢ = n/m (m = 1,2,,,). From linearized equations for
6C and dx, we obtain an equation for the eigenvalues A as

5¢ \_ ([ v+Ee E, 6
A ( Csozx > - ( —Cst CS/BQ(F_FC) ) ( Csom > , (22)

- cosq—e Pl ~ —ifsing
- x

~ cosh Bl — cosq

where

cosh Bly — cosq’

The coefficient matrix in Eq.(22) becomes diagonal for the smallest wave-
length ¢ = m, so that (1,0) gives the eigenvector with eigenvalue \¢ =



—v + 2/(ePs 4+ 1). The stationary state with period [, becomes unstable
when A¢c > 0. The state with the largest l5, which corresponds to Cs = 2,
is the most stable but still loses stability at v = ~,, where

fyszi(a—{—él—\/aQ—{—lG). (23)

Thus, all stationary states are unstable for v < ;.

From our numerical simulations, the system is found to exhibit turbulent
behavior for v < 5. When v exceeds 75, the turbulent behavior persists
up to a certain value of v (denoted as 7.). Near and below 7., the system
behavior is characterized by spatio-temporal intermittency (STI), and its
typical behavior is shown in Fig.10. We investigated frequency spectra of
the field ¥ (z,t) = %ZJ e’mx*xﬂ"C’j and the size distributions of laminar
domains. They are illustrated in Figs.11 and 12, respectively, where we
define that a given element is in the laminar phase if D; of Eq.(18) is less
than 107%. It is seen that, as the transition point 7. is approached, the
frequency spectrum of W(x,t) comes to obey a power law. Similarly, the
size distribution of the laminar domains also changes from exponential-like
behavior to power-law behavior. In Fig.13, we plot p and 7~! against
under fixed o and 8. The figure suggests that 7—! approaches zero like 771

Y. — 7. These results are consistent with the STI found in coupled map
lattices[9, 5] and also with experiments on directional viscous fingering[12].

5 Discussions

In introducing our model in section 2, we assumed that the tip of each
finger is well localized, which justifies (i) that the field F; of Eq.(7) is suffi-
ciently small and (ii) that Fj is a superposition of the fields u; of the other
fingers. The above assumption will not always hold for real fingers. Indeed,
the dimension of the tips is nearly the same as the distance between fingers
as is seen in the many experiments on viscous fingering and crystal growth.
However, if the equation corresponding to Eq.(1) is free from nonlinear terms
as is the case of the phase field model[10, 4] for crystal growth, property(ii)
is strictly correct and (i) also holds roughly because the field produced by
the other fingers will decay though diffusion. Therefore, we believe that our
model remains qualitatively.

For such patterns as fat fingers, the dynamics of the internal degrees of
freedom could be more important. However, improving the model in this
point may cause the problem of coupling between internal degrees of freedom



and splitting processes. In our model, the problem of splitting processes
reappears in a higher stage where it becomes more natural to regard each
tree as a basic unit.

We derives a phenomenological set of equations in (8) in relation to
the dynamics of the bacterial density b(x,t). In order to make a more
precise characterization of the individual elements, a systematic method of
reduction from real systems to a model system would be needed.

Although without detailed report here, we also carried out numerical
simulations using the logistic form ¢(C) = (o — yC)C and a(C) x C in
place of Eq.(9). In that case, no annihilation occurs so that rule (13b)
becomes irrelevant. Still we found qualitatively the same types of behavior
as those reported in the present paper. This implies that the decay of the
elements is not an essential factor to such behavior.

The relation in Eq.(19) implies that the system becomes more disordered
when splitting becomes more frequent. It is, however, a future problem to
predict theoretically the degree of disorder which determines the interval 7
of splitting.
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Appendix A

If 3, [Vu;l? ~ | 3, Vug)? in Egs.(2) and (3), then u(x, t) may be approx-
imated with u(x,t) >~ >, u;(x, t). In order to examine whether this is true,
we consider the field produced by a typical tip moving with a constant speed
V.

From Eq.(1) rewritten with a comoving frame r = x — V¢, the nutrient
concentration outside the tip obeys the equation D An+V -Vn = 0. There-
fore, the solution of Eq.(1) approaching a constant ng at infinity is expanded
in terms of the modified Bessel functions K,,(z) = %iemm/QHTSql)(iz), m =
0,1,2,,, ie.,

n(r) = nge %) = ng (1 — e*% i Pm(O)Km(;/—l;)> , (24)
m=0
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outside the tip, where
P, (0) = Ay, cosmb + By, sinmf, r-V =rV cos.

A,, and B,, are constants which are determined from the matching of the
above n(r) inside the tip.

The nutrient concentration n(r) in Eq.(24) must be positive finite outside
the tip. Since K, () diverge like Ko(z) ~ —log (x/2) and K,zo(x) ~ 2™
as z — 0, we have Py ~ O((—logVe/2D)~t) and P20 ~ O((Ve/2D)™),
where € is the linear size of the tip region. Therefore, by the assumption that
the tip region of each finger is sufficiently localized, the terms of nonvanishing
m may be neglected, thus leading to

Ve _V.
u(r) ~ CKO(%)e—TD“ <1 (25)

far from the tip, i.e., 7 > €. Here we have used the notation C for the
constant Py(0).

When u; < 1, which is true except near the i-th tip, the above condition
is satisfied because

Vul? — 3 [Vu)? N D ity Uil
| A U| Do Ui

<1. (26)

Therefore, we have u(x,t) ~ >, u;(x, t) as expected.
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Figure Captions

Figure 1

Phase diagram for the present model system with v = 0 and transver-
sal system size L = 20.

Figure 2

Space-time pattern obtained for « = 8 =1, v = 0 and L = 20 over
the time interval of T" = 75. The size of C; is indicated by the density
of dots.

Figure 3

Average density p in a turbulent state obtained for v = 0.

Figure 4

Space-time pattern obtained for o = 1000, 5 = 0.01, y =0 and L = 20
over the time interval of T' = 75.

Figure 5

Wavenumber spectra S (k) of the density p (for definition, see the text),
where v = 0 and af = 20.

Figure 6

Space-time pattern obtained for o = 50, § = 0.03, v = 0 and L = 50
over the time interval of T' = 75.

Figure 7

Behavior of spacing I between trees obtained for v = 0 and L = 100.
(a) Bly and W/lp plotted against 3. (b) the average of Slp plotted
against «; Bl is also plotted for comparison’s sake.

Figure 8

Space-time pattern obtained for « = 4.8, § = 0.1, v = 0 and L = 50
over the time interval of T = 75.

Figure 9

Space-time pattern obtained for « = 0.2, § = 0.4, v =0 and L = 50
over the time interval of T = 75.
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Figure 10

Space-time pattern obtained for « = 8 =1, v = 0.275 and L = 100
over the time interval of T' = 150.

Figure 11

Frequency spectra S(w) of the field ¥ (for definition, see the text)
obtained for « = 6 =1 and L = 100.

Figure 12

The number of laminar domains N (w) is plotted as a function of do-
main size w, where « = § = 1, L = 1000 and (left) v = 0.26 with
linear-log plots /(right) v = 0.28 with log-log plots. The right figure
was produced from the data over the time interval of 10000 after a
long transient of 15000.

Figure 13

Change of the average density p and the interval 7 of splitting with
increasing 7, where a = 8 = 1 and L = 100; . is evaluated to be
Ve =~ 0.28 + 0.05.
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